{c) 1981

The BASIC/S Compiler System llby: BILL STOCKWELL B

| Mod I or III - 48K required Published by PowerSoft
| and 1 disk drive. (2 preferable) a div. of Breeze/QSD

Contains BASIC/S and BASICSII/CMD
Documentation by: Bill Stockwell

Final editing bys Renato Reyes, PHD
% Dennis A. Brent

First printing — March, 1982

| 11500 Stemmons Freeway, Suite 125 —— Dallas, Texas 75229 |

Introduction to the BASIC/S Compiler System Page 1

The BASIC/S Compiler System consists of two main programs —
BASIC/S and BASICSII/CMD — along with numerous supplementary files.
Both BASIC/S and BASIC/S 11 are compilers for a large subset of
TRS-80 Disk BASIC — the first one, BASIC/G, is itself a BASIC program
while BASICSII/CMD is a machine language version, compiled by
RASCOM{c). The difference between them is that BASIC/S supports the
full BASIC/S subset, while BASIC/S 11 i=s an integer compiler. It does
not support Ffloating point. Other than that, the two compilers
support essentially the same BASIC subset. You get both compilers in
one package. In general, one would want to use BASIC/S 11 (because of
its speed), but when yvour application requires fleoating point, then
BASIC/S is available.

Both compilers will run under virtually any Mod I1/Mod 111 DOS.
except TRSDOS Mod III. At least 48K and one disk drive are required
to use BASIC/S. (Two drives are preferable).

Note : BASIC/S 11 does NOT run under Mod III TRSDOS due toc the way
the FCR is handled, {(R. Shack®s weirdness, not ours). For Model 111,
use ANY other DOS, (LDOS, NEWDOS/80, DOSPLUS., or Multidos).

It will compile up to a 260 line program — compiles into a /CHMD
file with no linking or run time module needed. HNo royalties are
required for programs you write and compile with BASIC/S. A mention
in the program and doc would be appreciated. ("Compiled by BASIC/S").
The /CMD Ffiles created by BASIC/S are very reasonably sized.
Typically, they are only 1.2 — 2 times the size of vyour original
BASIC source File. QBuite often, if vyouwr souwrce file is only 1
granule, then so is the /CMD file made by BASIC/G.

The name BRASIC/S means BASIC/Subset. It does NOT compile +ull
bBlown BASIC. It DOES support MOST of Level II Basic as well as the
essential elements of sequential and random disk I/0, including LRL <
236. BASIC/S allows dimensioning arrays of all variable types, with
up to two dimensions; any one program can have up to 20 arrays.
Also, BASIC/S compiled programs can chain from one to another with NO
loss of variables.

BASIC/S syntax is, in general, much more restrictive than
regular Disk BASIC. Expressions need to be broken down to simple
forms for the most part. Therefore, most programs will have to be
rewritten to be compiled with BASIC/S. One area where the syntax is
NOT so restrictive is in math expressions involving Ffleating point
variables {(for BASIC/S, not BASIC/S I1) - thus
A=7ESINI(X+YICOS(A+R/C) -BOR {1 /7)) ¥ARRAY (M%))
would be perfectly 0K (just be sure to dimension ARRAY ')

Following is a list of the command/keywords/functions

(c) 1982 by Breeze/05D, Inc.

Introduction to the BABIC/S Compiler Bystem Page 2

supported by BASIC/S 3

DEF FN OFEN ("R","0O","1I","E") LINE INPUTH PRINT#
CLOBE GET PUT FIELD CLEAR
MK I cviI Mg cvg LSET
RND RANDOM cLs LaF IF
PRINT ’ PRINT® LPRINT INFUT ABC
CHR% VAL STR% LEFT® RIGHTS
MID% (both sides of =) INSTR INKEY% LEN
GOTO GOSUR - RETURNM CINT CSNG
SET REBET - POINT FEEK FOKE
INP auT AND ORrR FOR
NEXT USR DEFUER DATA READ
RESTORE RUN (as in RUN A%, At=any dos command) SIN
cogs TAN ATN EXF L.OG
ARS 50R INT SET EOF SCAN
HEX# CHMD aN GOT0 ON ERROR

oaem e e St i e ey Soony v ey e it Bttt e vt e

There are 2 diskettes contained in this package; both are self

booting {(on either a Mod I or Mod III) -~ just boot each disk in
twrn —~ it will display the files it has, prompt vou for a
destination drive, and dump the files to it. The destination
drive must already be formatted (TRB8DOB format, 1 or III).
S8ingle drive owners need to prepare 3 {(yves, three!) disks
("stripped downi$$TREDOW, with at least S@EK free on each one).
Boot the MABTER disks enclosed with this package, and follow the
instructions on the screen. You will be prompted for the disk
SWapPS..

Note :. If you are using a Mod TII, vou are aware that BASBIC/E is
NOT compatible with Mod III TRSDOS. You still, however, need to
"dump" the contents of vour enclosed MABTER disks to a TRBDOS/III
format. After the programs are on YOUR disks, you may "convert”,
"repair', or whatever operation the DO8 vou intend to use
requires for accessing TRSDOS/III files.

Contents of the Disks:

Disk 1z BASIC/S - These two programs -—
COMPILER/DAT - go together. -
QUICK/RBAS
REMPER/BAS
BRINHEX/BAS
SAR/BAS
SPACEWAR/BAS
SHELL /BAB

(c)1982 by Breeze/(08D, Inc.

Introduction to the BASIC/S Compiler System Page 2

CAL.C/BAS
COMFPARE/BAS ~the lasgt four are for BRASIC/8 only-~-

Disk 23 BASICSII/CMD - these two programs -
. COMFPILE/DAT - go together -
FLOAT/TXT
FLOAT/EBAS
FLOAT/CIM

For day to day use, vou just need BABIC/S and COMPILER/DAT.
(BASICSII/CMD and COMPILE/DAT in the case of BASIC/S ID).

Each compiler has its own DAT file, which contains most of the
data that is used to make up the /CMD files created by BASIC/S.
Once BASIC/S is in memory and vunning, you can take the disk
with BASIC/S on it ocut of the drive —— you only need the correct
DAT file (and yvow sowrce file) on line while compiling. The
other files on the disks are supplementary files -~ mostly
examples of BABIC/S compilable programs, to give you an idea of
how to write BABIC/S code. By and large, it is not so different
than writing any other BASIC proeogrami; vyou just have to watch
vour syntax more closely, and be aware that vour program will be
running in & compiled environment, B

Following is the documentation for the two compilers, starting
first with BABIC/8, and winding$up with BABILC/8 11.

(c)1982 by Breeze/08D, Inc.

BASIC/S Documentation Page 1

¥ % ¥ % 2 % & % %X X ¥ KR X KR X R X XK X ¥ X X R OKE R R %
% BASIC/S COMPILER &
{C) 1981 by Bill Stockwell and Breeze/RSD
b —Version 3.7 for Mod I and III- K
& —A11 Rights Reserved- X
¢ Published by: Breeze/@S8D, Inc., Dallas, Texas X
¥ % ¥ % % ¥ % 4

B X X 2 ¥ % &8 % X % ¥ ¥ ¥ ¥ ¥ ¥ ¥ & R R XXX

Getting Started Using BASIC/G:

IMPORTANT!! There is a variable in BASIC/S, in the very first line,
which tells BASIC/S what disk operating system vyou are using.
Currently, this is used so that LOF calculations will be done
properly - ie when vyou compile a program that does an LOF
calculation, it is important for the compiler to know what DOS is
being used so that this calculation will be done properly. {The
assumption is that you will run your /CHMD files under the same system
that they were compiled on. If this is not true, you need toc change
the variable as explained below and recompile under the other DOS).

The variable in question is KS; and is found at the end of line 1 of
BASIC/S. It is now set as K8 = 5. This is the correct setting for
LDOS {(tm).

Here are the other values :

Use KS=3 for Mod III1 TRSDOS
KS=4 for DOSPLUS 3.3 or earlier
and @ for all other DOS*s.

You can make this change and save BASIC/S with it, or you
can specify K8 when you RUN BASIC/S: when this is done,
it overrides the KS setting in line 1. See the section on
RUNNING the compiler for details.

On the disk vyou receive, there will be just one copy of BASIC/S,
one of COMPILER/DAT, and some supplementary demo and utility files.
Copy these to a disk of your own.

It is a good idea at this time to compile one of the sample
programs on the disk. SHELL/BAS, LOOK/BAS, SPACEWAR/BAS, and
COMPARE/BAS are all BASIC/S compilable. SHELL/BAS is a Shell
Metzner sort program which will sort an ASCII sequential disk file
of up to 79 strings; after you compile it, you inveoke it wvia GSHELL
OUTPUT=INPUT from DOS READY mode, where INPUT is the file you want to

{c) 1982 by Breeze/85D, Inc.

BASIC/S Documentation Page 2

sort, and OUTPUT is a new file which you want the sorted file to
be written to. Dont try to run SHELL/BAS from BASIC (as is). It
checks the DOS command buffer at 431i8H for the file specifications,
which will not be meaningful from BASIC. TEST/DAT is a file for
SHELL to sort. After compiling SHELL/BAS execute the /CMD file via
SHELL OUT=TEST/DAT (where 0OUT is vyour output file). To compile
SHELL /BAS, you should get into Basic and RUN"BASIC/S", making sure
that COMPILER/DAT and SHELL/BAS are on 1line ;3 when BASIC/S asks
"Files, options 7", respond with:

SHELL /BAS,SHELL /CMD, , S6808 <{enter >

This way, your command file will be placed into high memory, making
room for a string array of dimension 79 (T$) in low memory. If you do
not specify a starting address {(which you normally wouldn®t), it will
default teo 35286H, which means that the 7% array will be placed in
high memory, where there is room for only 37 strings f{and that’s
counting all the way up to FFFFH !). No problem if your file is no
more than 37 strings long AND you have nc high memory drivers in
place; otherwise...

See below for more information on running BASIC/S.

COMPARE/BAS allows you to compare 2 files to see i¥ they are the
sSame.

SPACEWAR/BAS iz a fast paced, real time shoot the Klingons game. You
can run it in Basic or as a /CMD file after you compile it, but it
runs MUCH faster compiled!

fAlso there is CALC/BAS; which is a DOS level calculator
{after being compiled). See the remarks at the beginning
of this program for more details.

For the most part, these programs allow you to become familiar with
the rather restrictive syntax of BASIC/S.

The version of BASIC which is supported is a subset of Disk Basic.
Only simple expressions and variable names are allowed, but most
of the features and built—in functions of Level II1 are
implemented, along with the essential elements of sequential and
random disk I/0.

Note: Unlike regular BASIC, programs compiled by BASIC/S do NOT
have any initialization of variables done. Thus numeric variables do
not start out as zero, or strings as null. {(See the CLEAR statement,
however). One advantage of this appreoach is that one compiled
program can invoke another (using the RUN statement) and all
variables will be preserved.

Use of constants in BASIC/S is somewhat restricted: many statements

allow (real or integer) constants 3§ most statements do NOT allow
string constants. BSee the section below on the individual statements

(c)1982 by Breeze/@5D, Inc.

BASIC/S Documentation Page 3
for more details.

You may have multiple statements per line; the only restriction
here is that IF, 6070, and G60OSUB statements (and ON GOTO
statements, also) must begin the 1line they are on. Spacing is
critical when writing a program to be compiled by BASIC/S; in
general, use spaces only to separate keywords from identifiers (FOR
NZ=A% TO B%Z rather than FOR N%Z=A%TOB%).

Look over some of the sample programs on the disk to see how
statements are to be coded. The syntax must be followed....

——————— > EXACTLY !'! {————-

The compiler allows the following variable names (all single
letters): integers A%Z thru Z7%, reals A-Z, and strings A% thru Z$.
Also, you may dimension arrays of any of these three types, and vyour
array names can be any length, with every character significant.

See the DIM statement for more on this.

REQUIREMENTS :

A TRS-8d{(c) Mod I or 111 with at least one drive and 48K.
Repeat... 48K. Two drives are preferable.

RUNNING THE PROGRAM =

BASIC/S uses some USR routines (in the FOge-Fi199 area)l,

so you MUST set memory size at 61449 (X°F@88°) to run it. If
you are using LDOS, you should set BLK=N as well. DOS+
requires you to specify the number of files; for BASIC/S,
that number is 3. Also, use TBASIC when running under

DOS+. Be sure that COMPILER/DAT and your program to be
compiled {(saved in ASCII) are on line when you run BRASIC/S.
REPEAT. ... your program to compile MUST be saved in ABCII!

e.g. SAVE"FILENAME/BAS" A <enter>
{the /BAS extension is NOT required)
Now BASIC/S will ask:
Files, options 7
The typical response will be in the form:

SOURCE, OBJECT

{c) 1982 by Breeze/25D, Inc.

BASIC/S Documentation Page 4

e.g- TEST,TEST/CMD where TEST is the name of the ascii Basic program
you want to compile, and TEST/CMD is the name of the load module vyou
want to create. You may specify drive specs after either file name.
It is best if the OBJECT file does not already exist. If it does
exist, BASIC/S will kill it before continuing. No big deal, but it
takes a little longer.

Three other parameters may be specified here. The first will produce
output to the system 1line printer (in the form of source code and
errors), while the second will tell BASIC/S where the load module’s
start point is to be. To specify line printer output,; just put a %
{or ¥PR, or %pr, or f%anything) as the third parameter. The address,
if present, should be a decimal integer in the fourth position. It
may be positive or negative — Basic/s will respond correctly either
way. Thus, complete syntax to the "Files ?" question is:

SOURCEFILE,OBJECTFILE, <¥PR>; <ADDRESS>,<S=n>

Here the brackets "< >" are NOT to be typed, but indicate optional
entries. If no printer output is wanted; but an address is to be
specified, then the third parameter should be null - ie, present, but
null or blank as indicated by two adjacent commas.

The 5= sets KS, so that you may tell BASIC/S what DOS you are using
at run time. Use 5=3 Ffor Mod I1III TRSDOS, S5=4 for DOS+ 3.3 or
earlier, 5=5 for LDOS;, and 5=9% for all others. If the &= option is
present, do not use nulls for the PR or address options: if they are
present, fine, but if not then Ileave them out. If PR is not
present, but address IS present, then leave an extra comma for the
absent %¥PR.

Here are some examples :

TEST/BAS, TEST/CMD: 1, , 56080
TEST, TEST/CMD: 8, 5=3
TEST, TEST/CMD: 8, , 56606, S=@

The compiler gets much of the data needed to compile vyour program
from a random access disk file (COMPILER/DAT). Be sure this file is
on line when you use BASIC/S.

THE BASIC/S SUBSET (Statements supported under BASIC/S) @

followed by a SINGLE variable name, or an expression in
guotes. Thus 3

{c) 1982 by Breeze/85D, Inc.

BASIC/S Documentation Page S

PRINT A%Z or
PRINT"Message"”

Also, you may use a semi—colon after anything being
printed in order to suppress the carriage return.

PRINT® is also supported -— just set any integer
variable to the value of the location to be printed

at, and vyou may then use any of the above forms with
it. Thus :

PRINTIONZ, "TR5-88" 3

LPRINT

Syntax for LPRINT is in every way the same as for
PRINT, except of course that LPRINT? has no meaning.

You may input a single variable, of any type. You may
not input a 1list of variables, but INPUT"PROMPT":A is

supported {(or AZ, or A%). HNote: Spacing is important
in BASIC/S. Do not run keywords and variable names
together — use a single space in between them.

When executing a Basic/s compiled program, if input

is requested,; hitting the <break’> key will cause an

exit to DOS READY.

Also, if in answer toc an input prompt, you hit <{Enter>
only, then the variable being inputted remains
unchanged and the program continues {(just like

regular BASIC —— and this holds regardless of variable
type (integer, real or stringl))l.

LINE INPUT
LINE INPUT from the keyboard is supported. Syntax is
exactly as it is in BASIC. You can even make LINEINPUT
one word if you like. You may LINE INPUT a real or an
integer variable if you wish, although this would not
work in BASIC.

e2.9- LINE INPUT A% or
LINE INPUT "Prompt”:A$ {just like in BASIC)

This statement allows vyou to set a string (A% in this

(c)1982 by Breeze/G5D, Inc.

BASIC/S Documentation Page 6

case) to any DOS command, or the name of a command file
vyou wish to invoke, and to exit the current program and
have that command executed. Do NOT say RUN"PGBM"; this
will be not be correctly compiled! Also, RUN by itself
is incorrect. The program being run, if compiled by
BASIC/S, will NOT disturb the current values of BASIC/S
variables. Thus you can chain from one BASIC/S compiled
program to another with no loss of variables.

This statement, with or without an argument, will’ cause
BASIC/S variables to be zeroed out. It depends on where
your /CMD file starts; if your /CHMD file is in low
memory, then all memory from 41216 (decimal) up to

HIGHS% will be zeroed out, while otherwise 3280H up to
D6DBH is zeroed out. This makes sure that your /CMD
file itself will never be affected, but that your
variables will be zeroed. This works equally well on
the Mod 1 or the Mod III — Basic/s knows which machine
you are running it on, and will use the correct HIGH$
for your machine. DATA will also be cleared, and an
automatic RESTORE done so that the DATA pointer will be
correct.

6070 1In
The GOTO statement. Do not space between the GO and the
TO. DO space between the G070 and the line number.

GOSUB 1n
The standard GOSUB statement. Be sure your G60SUB’s and
RETURNS match up properly, or your /CMD file may crash.

This statement works almost exactly as in BASIC, the
only limitations being that the right hand side must be
already handleable by BASIC/S as in a normal assignment
statement, and alsoc only one argument is alliowed. Thus
it would be most useful in the case of the target
variable being real, with the right hand side a real
expression {(see the section on assignment statements).
But the argument and the target may be any type (real,
integer, or string). Although only one argument is
allowed, vyou may use any other variables you like on
the right hand side —— but they won’t be dummy.

Note : Constants may be used {(real and integer,

{c) 1982 by Breeze/G8D, Inc.

BASIC/S Documentation Page 7
anyway).

READ /7 DATA / RESTORE

Your program may have DATA statements, containing
integer constants only (as in DATA 1,2,3) —— in all of
your DATA statements you can have a total of 383
integers (no more). It 1is important that these DATA
statements come before the READ statementi{s) that are
to access them (physically before, that is) —-— the
compiler generates code to place the data in memory
when the DATA statements are encountered. Syntax for
the READ statement is READ NZ — you can read only a
single integer variable, which would normally be done
in a FOR/TO loop. One big use for this is to poke DATA
for a USR routine into memory. Before BASIC/S allowed
READ/DATA, this process was rather clumsy.

RESTORE

works just like in standard BASIC.

A very restricted IF statement — you may only compare a
floating point expression with zero, or two strings,
or two simple integers {(variables or constants). For
floating points, syntax is:

IF X<@& THEN 188

or IF ZI=@ THEN 88

or IF SIN{A%B-C)<E THEN 260
{more on real expressions later).

The variable must be on the left. For strings, you can
say

IF A%<B% THEN 20
or IF A%$=B%$ THEN 100

The compare must be in the *<° direction only, or with
*=", You may check whether a string is null via

IF A$="" THEN 208 (for example)
but this is the only time you may test a string against
a constant.

For integers :
IF A%Z=B7%Z THEN 104
or IF AZ<B7% THEN 59

{c)1982 by Breeze/QSD, Inc.

BASIC/S Documentation Page

{and either AYZ or B%Z may be an integer constant, as
in IF AZL72 THEN 266).

#¥% Note: 6070, 6GOSUB, and IF statements MUST
begin the 1line that they are on. Also, ELSE is now
supported by BASIC/S; you may follow an IF statement
with ELSE, and then as many statements as you like, as
long as they aren™t the type that must start the line
they are on (IF, GOTO, GOSUB and ON G0OTO). Thus :

IF EOF (1) THEN 2¢@ ELSE LINE INPUT#1,A%:A$=A%$+B$

FOR/NEXT

USR

The For/Next loop is implemented for INTEGERS only. You
may code

FOR A%Z=BZ TO CZ (spacing important!)

NEXT AZ

Constants may be used where BZ and C/ are indicated,
as long as they are integers {(positive, negative, or
zero). Just be sure to use a single space after FOR
and before and after TO. The variable in the NEXT
statement is NOT optional. There is no STEP clause.
FOR/NEXT loops may be (statically) nested.

The lack of the STEP clause is not a great problem;
for example, to do FOR 1%=5 TO 188 STEF 5. do this:

FOR I%Z=5 TO 1949

I72=174+4:NEXT I%Z

A single USR call is allowed. It must be set up by
DEFUSR, and the calling address must be a simple
decimal integer constant. Thus :

DEFUSR=—1800

Note: There is naoa VARPTR statement. However, the
addresses of all simple variables in BASIC/S are always
the same and may be calculated as follows :

REALS : If the ascii code for the variable is
A, then the VARPTR will be
-11535+4%{(A—-635) .

INTEGERS : —-11486+2%(A-465).

{c)1982 by Breeze/G5D, Inc.

BASIC/S Documentation Page
STRINGS : —-23192+256%{(A-65).

Strings are stored a little differently than in Level
11. Each string is allocated 256 bytes;, the first of
which contains the length of the string (8 to 2535) and
the rest of which contain the string itself. The
Varptr points to the length byte.

YZ=USR{X%)

This causes the routine whose address was defined by a
previous DEFUSR statement to be called. The current
value of X% is loaded into the HL register pair before
the call is made, and on return, Y4 is given the value
in the HL register pair. Do not use the ROM routines
at 8A9A and BA7F for this. Any integer variables may

be used, not just X% and Y4Z. Also, a {(decimal) integer
constant may be used as the argument to be passed.

SET, RESET, and POINT

Use integers (either variables (followed by %) or
constants) as the arguments. As with most BASIC/S

functions, they may not be used in more complex
expressions. Thus

SET (X%, 26)
AZ=FPOINT (BZ,C%)

The latter is the only way to access POINT — it cannot
be invoked in an IF statement.

PEEK and POKE

Exactly as in Level 11, except that

the arguments must be integers -—— {constants
or variables). Thus

AL=PEEK (M%)
POKE AL, B%Z
POKE 15368,191
L74=PEEK (14312)

INF and OUT

Syntax here is just like that for PEEK and POKE,
i.e. you may use integer variables or constants
as the arguments (no expressions).

AZ=INP(PY%) {input a byte from port P%L and

{c)1982 by Breeze/8SD,; Inc.

AND/OR

DIM

BASIC/S Documentation Page

store in AXL)
ouUT PL. VL (output value Vi to port PZL)
ouT 255,1
S7Z=INP (232)

You may use these two functions in order to calculate
an AND/OR result (for integer variables or constants)
and store the answer in an integer variable. Thus

X7Z=YZ AND 26
UZ=R% OR BZ%L

Clear the screen

Random numbers between § and 1 may be generated by the
statement X=RND(#). The left hand side may be any real
variable. The argument is not actually required; vyou
can simply say X=RND if you like. The statement RANDOM
is alsc supported, to reseed the random number
generator.

You can DIMension up to 26 arrays in a program to be
compiled with BASIC/S — they ctan be integer, real or
string, as distingquished by %, %, etc. The array names
may be any length (up to 235) with every character
significant.

ONLY letters A-ZI should be used for the array names.
(Actually, any characters except digits -9 may be
used, although you should avoid % and % as they

are used to determine variable type).

Thus

DIM ARRAY (28,7) ,5T$(15) { NUMZ (58)

You may have one or two dimensions for each array — no
more. DO NOT use BASIC keywords in your array names.

Be careful about your available array space - BASIC/S
will tell you if your array space will overlay BASIC/S
data areas or the currently set high memory. It will
also let you know exactly where your array space lies-—
if the latter number is FFFF, look out! That means that
your arrays are dimensioned too large {(almost certainiy).

{c) 1982 by Breeze/Q8D, Inc.

10

BASIC/S Documentation Page

If this happens, try recompiling with a start address of
S688@; this will give you about 19.75 K of space for
your arrays, as it puts your /CHMD file in high memory
instead of low.

Still, 19.75K is only enough room for a string array of
dimension 79 (79 % 256 = 26,224). With real and integer
arrays, you can use much larger dimensions.

Syntax for using array slements @
For the most part, you can use your array variables just
like any other variables; and you may always use integer
constants (as well as variables) for the subscripts).
Thus

READ NUMZ{(IZ)

INPUT ARRAY(7)

PRINT ST${(UZ);

AS=LEFTS (ST (5) ;NUML(IXL))
The exceptions are as follows =
When an array element is on the left hand side of the
*=? sign, the right hand side MUST be a simple variable
or constant (string or numeric) - no expressions
{or more array elements) allowed.

Also, any statement that references an array element
should contain NO numeric constants of any kind, except
for (possibly) subscripts to the array itself.
One exception here is that array elements may be
compared via the IF statement, and the line number
reference will not be misconstrued. So

IF STS(1)LSTSH(IL) THEN 75
is OK; just be sure to follow the syntax in all other
respects. But something like

LINE INPUT#1,STS{(I%)
or PUT 1,L%Z<1I%)

11

won’t work as the 1> will be misunderstood, and translated

to a temporary integer variable, which won™t work.

SCAN

This non standard statement, not found in regular

BASIC,
a time,

allows you to read a file or device a byte at
similar to INKEY$. Syntax is

SCAN b, A$

where b=DCB number, and the byte read (if any) is stored

in AS%.

The file or device must be opened first.

BASIC/S Documentation Page

HEX%
This statement is for hex conversion:; it takes
an integer argument, and converts it to its hex string
equivalent. So if N%4=255, then A$=HEX${(NL) would give
A% the value "FF".

SET EOF

This statement is for use with LDOS only; it allows you
to truncate a random access file. Under BASIC/S,; random
access files are limited to DCR numbers 1 or 2; so the
syntax is SET EOF1 or SET EOF2. To do it, you GET or
PUT the last record in the file that you want it to have,
and then SET EOF and CLOSE it to chop it off. For
example, if you wanted to chop a file off at S0 records :

RZ=50:6ET 1,R¥%:=:5ET EOF1:CLOSE 1

CMD
Syntax here is just CMD A%, where A% is any string
variable containing a command you wish to pass to DOS and
return from. Typically, you would compile a program that
uses CHMD at S6000, or at least above the DOS command area
S200-6FFF {(hex); otherwise yvour /CMD file will likely be
overwritten. Do not use CMD "uxuxux"; set a string variable
to the command you want.

ON ERROR

BASIC/S supports a limited form of error trapping; vou
can trap DOS errors only using it. First, your ON ERROR
statement must appear AFTER the error trap routine itsel+.
Thus your program would typically start out branching
around the error routine; to the ONM ERROR statement.

Thus:

S0 ON ERROR GOTO 100

would not be legal, since line 100 comes after 50.
Secondly, while ERR is supported, ERL and RESUME are not.

It is very important that the very FIRST thing vow error

{c)1982 by Breeze/05D, Inc.

BASIC/S Documentation Page 13

trap routine does is AYL=ERR (ie; set some integer
variable equal to ERR). If vou wait te do this, ERR will
change and not be relevant. Also, this is the only legal
use of ERR; you must set an integer equal to it, period.
ERR will contain the DOS error code that was detected by
the DOS and returned in the A register; consult your DOS
manual to see which codes refer to which errors. A code
aof 24, for example, means File Not Found. This does not
trap such things as division by zero or illegal function
cally only disk errors are covered here.

ASSIGNMENT statement :

REAL. :
=Y {any var=any other var)}
X=const {var=constant value)
X==Y {var=—other wvar)

X=real expression

Here {and in the IF statement for real
expressions) is the only place where BASIC/S can handle
complexn expressions. A "real expression” i1s defined as
any combination of the real variables A-Z,
+, =K,/ s{.); and the built-in Ffunctions SIN, COS5,
INT, TAN, ATN,LDOG, EXP, SBR,; and AR5, and up to 4
constants. Thus

Y=5¥SBR{ZASIN(2%X+C)) , for example.
Be careful with constants — you may only have 4

"active" constants at one time {(for each var type),
and this includes not only obvious constants, but

also unary minus signs — thus Z=2%{(-X) would have
two constants (it would be translated into 2%{0-X)).
Important note — i+ you divide by a

product, be careful. BASIC/S will interpret A/BiC as
A/ (BEXC) rather than the usual (A/R)¥C. This is due tco
the right to left parsing algorithm that is used. Use
parantheses if in doubt. Another peoint is this: If
yvou calculate X Y (X to the Yth power), this is done a
little differently than in Level II — it is calculated
as EXP(YILOG{X)). Since LOG{X) is undefined for X<=0,
this will CRASH yvour BASIC/S /CMD Ffile, whereas BASIC
will normally handle it if it makes sense as a real

{c119282 by Rreeze/(058D, Inc.

INTEGER

BASIC/S Documentation Page

number. So if yvou want to do such a calculation, vyou
should check for X being 0 or negative.

X=CS8NG (X¥)

You can use this function to convert integers to real,
but BASIC/S supportes use of integer variables in real
expressions, so it is rarely needed. {(You may NOT use a
real variable in an integer expression, thoughl. Thus,
XZ=CINT{(X) is a needed function, for converting reals
to integers; and this function may be freely used
wherever an integer variable would normally be expected.
Thus SET(CINT{X) ,CINT(Y)) or GET 1,CINT(R) would be
fine.

S =
Integer arithmetic is limited to +.—,% and only 2
operands allowed on the right hand side. No builtin
functions for integers. Constants may be used. however.
Thus:

X4=ALIB%L

X4=5-B%
Note that unary minus is not allowed here {(for
variables) ie X4=-Y%+Z% is no good, while X4=7Z4-Y%Z is
OK. OFf course you may use unary minus if the right hand
side is a single variable, as in X%i=-Y4L.

A$=R%

As="constant"

AF=R%+C% {simple concatenation)
Also we have the builtin string functions ASC, LEN,
CHR$, LEFT%. VAL, RIGHT%, MID$, STR$, and INSTR.
Where numeric arguments are reqguired in the
string functions, simple integer variables or constants
must be used — no expressions. The actual string
arguments cannot be constants, but

AS=LEFTH{(X%,2)
{(for example) would be OK.
Also, expressions must be reduced to their simplest
farm — e.g., concatenation within a function or
function composition is not allowed. Break it down!

NMote: The INSTR function differs from the regular
DISK BASIC one in that no starting position may be

(Y1982 by Breeze/05D, Inc.

14

BASIC/S Documentation Fage

specified —— syntax is just NZ=INSTR (A%, B%).
However, unlike previous versions of BASIC/S, ALL of

B$ is searched for, not just the first character.

MID$ note —— vyou can use MID% on the left hand side

of the = sign, and in that case, you can use either of
the two forms MIDE{A% . NL)=B$% or MIDE{(AS,NAL.LAL)=BF ——
but they will give the same results, i.e. the length of
B$ is wused, LY is ignored in the second form. I+ the
source string (B$) is null, nothing is done.

Note III: The INKEY$ function is implemented, and

must be used in the form: AF=INKEY$ {(or B%, etc.).
Also, VAL may be used for reals only; i.e.,

X=VAL {A%)

and conversely, STR$% works only on floating
point variables (A$=STR%(Y), for example). Do NOT
use a constant as an argument to STR%.

DISK 1/0 statements

Essentially, vyou have ten disk I/0 buffers available
for use (0-9), all of which may be used for sequential access,
and twe {1 and 2) of which may be used for random access. Here
are the specifics :

OPEN

The OPEN statement is essentially that of disk BASIC,
except that the +filespec must be a string variable and
not an expression in quotes. Syntax is

OPEN"m";b,F&<,r>
where m = mode = I1,0,R; or E

b = buffer = ((O-9) {constant only)
{(must be 1 or 2 for direct access)
F$ = filespec {(variable only)
r = logical record length {optional —— may be

either an integer constant or an integer
variablel.

BASIC/S makes few restrictions on vyour use of the
disk 1/0 statements, sc be careful. For example, if
vou wanted to open a sequential Ffile with an LRECL of
16, you could. However, you would probably be well
advised to stick to direct access files for this!

{c)1982 by Breeze/ /05D, Inc.

=

BASIC/S Documentation Page 16

OPEN"E" is like OQOPEN"0" except vyou start out
positioned at the end of the file.

Sequential I/0 is done with the LINE INPUTH# and PRINT#
statements. Just specify a buffer number adjacent to
the #, and you are ready to go. Only a simple string
variable may be input or output, although PRINT#1,A%;
will disable the carriage retwn.

Random disk 1/0 is accomplished via the following :

You must field vour buffer in order to communicate
between vyour strings and the disk file being accessed.
Syntax is :

FIELD 1,nn AS AS.mm AS B, ...

—— the buffer can be 1 or 2, the strings can be any of
At thrue Z$ (no array references allowed here!), and
the numbers “nn’, “mm° etc must be integer constants
{1-255 — O i=s not allowed). Alsc you cant really use
multiple FIELD statements for the same file.

— the second will override the Ffirst. Moreover, the
statements to process & random access file must be
statically nested —-—- i.e. do not GOSUR or GOTO a later
line to FIELD a buffer and then return to do yvour LBETs
and PUTs, etc. Just OFEN the file, FIELD the buffer,
process 1t, and CLOSE it, without GOSUBS and GOTOS.

{At least, don’t branch anywhere outside the range

of statements between the OPEN and CLOSE stmis).

LSET

To place youwr strings into the buffer prior to being
PUT to the disk, use LSET. Thus

LSET A%$=RB$% (spacing criticall)
where A% is one of the strings mentioned in yow FIELD
statement. I+ LEN{B3$) is less than that of the field
variable A%, it will be filled out with spaces in the

buffer. If greater, only the leftmost portion of B%
(for the fielding length of A%) will be in the buffer.

PUT

{c)1982 by Breeze/ /05D, Inc.

BASIC/S Documentation Page 17

Syntax is PUT b.N%Z where b is the buffer number (1 or
2) and N4 1is any integer variable, containing the
record number to be put. The record number variable is
not optional.

GET
As in BET 1,RL —— gets the R%4Zth record from the disk
file, and places its contents into the string variables
mentioned in the FIELD statement.

LOF

The LOF function is implemented and syntax is
NZ=LOF (b)

where b is the buffer number (1 or 2 —-- must be a
constant) . This returns the number of records in the
currently open file with buffer b. The setting of

the BASIC/S variable KS i=s critical when using LOF:; be
sure it is set to the correct value for vour DOS (3 for
Mod III TRSDOS, 4 for DOS+ 3.3 or earlier, S for LDOS,
and 0 for all others).

CVI and MKI%

For convenience in reading and writing integers
from/to direct access +iles, these functions are
implemented as in TRGDOS. In case vyou were mystified
as to exactly what they did — well, if the integer N%Z

has the 2 byte representation {(L,H), then MKIH{NZ) is
Jjust CHR$ {(L)+CHR$ {H) . CVYI just does the exact reverse.
Az with most BASIC/S functions, these may be used only
with simple integer/string variables.

Also implemented {completely similarly) are CVS

and MKS$. Since BASIC/S doesn™t support double
precision, CYD and MED% are not isplemented.

There is no global close in BASIC/S — vyvou must mention
the buffer number. Thus,

CLOSE 35

would close the file with buffer number S. If you close

{c)1982 by Breeze/5D, Inc.

BASIC/S Documentation Fage 18

a file that isn"t open, you will bomb out with “FILE
NOT OPEN’ .

EQF

This isn"t a function as suchy it is to be used in a
special form of the IF statement to check for EOF when
inputting from a sequential file. Simply say

IF EOF (b) THEN 200
{or whatever line number) to check for end of file on
buffer b {(0—9)

BARIC/S Memory Map

Following is a map of memory from S200H up to HIGH$, showing
how BASIC/S uses the memory in your TRS5-B0O (48kK):

/CMD file in low mem in high mem
5200 ——————————
vour /CHMD file Array space {(20K)
A1O0 - ————
This area is always reserved for BASIC/S variables
and DCR’s.
b7p8 ————————— -
Free area for yow own use {(e.g. USR routines).
DACO —————————

/CMD file
Array space
{DACO to HIGHS$)

{c11982 by Breeze/tl8D, Inc.

BASIC/S Documentation Page 19

~—DISCLAIMER OF WARRANTIES & LIMITATIONS OF LIARBRILITIES --

We have taken great care in preparing this paclage. We make no
expressed or implied warranty of any kind with regard to this manual
ar to BASIC/S. In NO event shall we be liable for incidental or
consequential damage in connection with or arising out of the
performance of this program.

BASIC/S (c)1981 by Rill Stockwell and Breeze/85D, Inc.

All rights reserved. HNo part of this manual and NONE of . the programs
may be reproduced or transmitted in any +form or by any means,
electronic or mechanical, including photocopying, recording, or by
information storage retrieval system, BBS;, etc. Registered owners are
entitled to make copies of the disk for their OWN use only!

Questions should be addressed to:

Rill Stockwell

4771 NW 24th #228M
Oklahoma City OK 73127
{403) 4741546

Mnet 70070,320

Rill Stockwell may also be reached on the 85D Sig
on MicroNet. Leave a message to 70001,610 for info
or from the OK prompt, type R QSD<enter:.

Published by:
PowerSoft — a division of Breeze/65D, Inc.
11500 Stemmons Expressway Suite 125
Dallas, Texas 73229

TRS—80 and TRSDOS are registered copyrights of the TANDY CORP.
LDOS is a registered trademark of Logical Systems, Inc.

Newdos and Newdos/B0O are trademarks of Apparat

Dosplus is a trademark of Micro Systems Software

{(c)1982 by Breeze/05D, Inc.

BASIC/S 11 Documentation Page 1

¥ & %X & ¥ & ¥ & ox ¥ %k ¥ ¥k ¥ ¥ o¥ ¥ ¥k ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ % ¥ ¥ ¥
BASIC/S 11 COMPILER X

(C) 1982 by Rill Stockwell and Breeze/0SD %
-Version 1.5 for Maod I and III- E

—-All Rights Reserved- %

Published by: Breeze/(0SD, Inc., Dallas, Texas %

% o% X ¥ ¥ o¥x ¥ %X ¥ ¥ ¥ ¥ ¥ ¥k ¥ ¥ ¥ X ¥ ¥ ¥ ¥k ¥ oK ¥ ¥k ¥ ¥ ¥

8 B M % M P

IMPORTANT!! There 1is a variable in BASIC/S which tells BASIC/S what
disk operating system you are using. Currently, this is used so that
LOF calculations will be done properly — ie when you compile a
praogram that does an LOF calculation, it is important Ffor the
compiler to know what DOS is being used so that this calculation will
be done properly. (The assumption is that you will run vyour /CMD
files under the same system that they were compiled on. If this 1s
not true, you can change the value of this variable as explained
below and recompile under the other DOS). This is discussed under
"Options", when vyou execute BASICSII.

On the disk vou receive, there will be 3just one copy of
BRASICSII/CMD, one of COMPILE/DAT, and some supplementary demo and
utility Ffiles. Copy these to a disk of yvour own. One of these files
is REMPER/BAS, a utility useful for those who have programs witten
far the original BASIC/S (the original BASIC/S requires percent signs
after integer variable names, whereas BASICS1I1 regards A-I as integer
variables — no percent signs allowed!) REMPER will remove all percent
signs from an ascii BASIC file, so that it will now be compilable by
BASICSII =so long as no real variables are used in it.

Another file is QUICK/BAS., which generates an integer array and
does a guicksort on i1t, and prints out the results.

Also there is BINHEX/BAS, originally by Tim Mann and rewritten by
Bill Stockwell into BASIC/S compilable form. This program is for
converting HEX files to/from /CMD file Fformat. HEX files are the
typical way in which binary files are stored on bulletin board
systems for transfer via modem.

Finally on the disk is a utility for allowing BRASICSII to handle
floating point values {(in a limited way) {(see the +iles FLOAT/TXT.
FLOAT/BAS., and SEOR/BAS for more into on this).

The version of BASIC which is supported is a subset of Disk
Rasic. 0Only simple expressions and variable names are allowed,
but most of the features and built—in functions of Level II are
implemented, along with the essential elements of sequential and
random disk 1/0. Floating point variables are not supported
(BASICSII/CMD is 40K as it is!), but integers. strings., and arrays of

{c)1982 by Breeze/85D. Inc.

BASIC/S I1 Documentation Page 2
type integer or string are allowed. Note: Unlike regular RASIC,
programs compiled by BASIC/S do NOT have any initialization of
variables done. Thus numeric variables do not start out as zero, or
strings as null. {(See the CLEAR statement, however). 0One advantage
of this appreoach is that one compiled program can invoke another
(using the RUN statement) and all variables will be preserved.

Use of constants in BASIC/S is somewhat restricted: many statements
allow {integer) constants ; most statements do NOT allow string
constansts. See the section below on the individual statements for
more details.

You may have multiple statements per 1line; the only restriction
here is that IF, 6GOTO, and GOSUR statements must begin the line
they are on (as must ON GOTO).

Look over some of the sample programs on the disk to see how
statements are to be coded. The syntax must be followed....

. = « however, the spacing is up to you. Thus, you could say FOR I=1 TO
N or you could say FORI=1TON. The compiler allows the f{following
variable names (all single letters): integers A& thru I and
strings A% thru Z$. Alsc, you may dimension arrays {(of either type),
and vyour array names can be any length, with every character
significant. See the DIM statement for more on this.

REGUIREMENTS =

A TRS-BO{(c) Mod I or III with at least one drive and 48kK.
Repeat... 48K! Two drives are certainly preferable.

RUNNING THE PROGRAM :

Just type BASICSII from Dos Ready. Be suwre that yvou do not have too
much in high memory — if HIGHY ics less than FEOOH, the compiler may
run out of string space {or other strange errors may occuwli. IF vou
are running Mod I LDOS, you can run Lower Caze and PDURL, but not
much else in high memory. For best results, run with HIGHS (HIMEM) =
FFFF, if possible.
{Mote on LDOS 5.1 for Mod I — you may have PDUBL and KI/DVR in high
memory — nothing else - to use BASIC/S 11. When vou SET KIJDVR, do
NOT use type ahead).

After BASICSII begins, you may remove the disk containing it, and
insert the one with COMPILE/DAT, if necessary, (if you have only one
drive, this must be a SYSTEM disk). Remember — COMPILE/DAT must be

{c)1982 by Breeze/85D, Inc.

BASIC/S I1 Documentation Fage =
on line AT ALL TIMES while you compile, as well as the program vou
wish to compile (saved in ASCII').

REPEAT.... vour program to compile MUST be saved in ASCII!
2.G. SAVE"BASPROGM/BAS" . A <enter>
(the /BAS extension is NOT required)
Now BASIC/S will ask:
Source

Obiject
Options :

(one after another). Typically, vyou will answer the first two
questions, and hit <enter> on the last one. "Sowrce" is the name of
the file to be compiled, and "Object" is the name of the /CMD file
vou want to create from "Sowce". Thus if you had an ASCII BASIC
program called TEST/BAS that you wanted to compile, yvou might answer
the above with:

Source TEST/RAS
Object TEST/CHMD: 2
Options : <enter:

He s

The options vou might take are as follows :

You can specify Start Address, whether or not ta list the souwce
file to the video during the compile., whether to disable the <J<{break?
key (for the compiled code), and what DOS is being used. Any or all
may be specified, but those that are used should be in the correct
order. The start address tells BASICSII where in memory vyour object
file should load to —— the default being S200H {20992 decimal). The
address HMUST be a decimal integer, but can be positive or negatives
ie D&DEBH is represented by either 35000 or ~-1053463; BASICYS knows what
you mean.

Use the letter N to indicate No list — BASIC/S normally lists
vour source file to the video as it caompiles, but if you don™t want
this, iust answer Options @: with N {(after the address, if there is
one). You might want to do this if you were getting a lot of errors
which were scrolling off the screen too fast.

You can specify the DOS vou are using via:s
S=x { w being an integer value).

lice:
4 for DOSFLUS 3.3
8 for LDOS

1 for Newdos/80 and DOS+ 3.4
0 for any other DOS
The default is 5 {(LDOS).

{c)1982 by Breeze/G5D, Inc.

BASIC/S I1 Documentation Page 4
TRSDOS (Mod III) is N O T_S UP P ORTED.
To start the /CHMD file at S6000, with no listing, and using Mod 1
TRSDOS, you would answer “0Options® with

Options : S6000,.N,5=0

Note that the S= option is important ONLY if your source file
computes LOF s. Also note that BASIC/S accepts lower case responses.

A new option, added in version 1.1 of BASIC/S II, allows you to
disable the break key while the BASIC/S /CMD file that is created
executes. This is done by typing the letter "B" among youwr options ~
like the other options, this must come AFTER any address. Doing this
will cause the folleowing to occur: during input, while a BASIC/S
/CMD file executes with the "BR" option, if the <break> key is typed,
then a line feed is done and the input starts over at the beginning.

THE BASIC/S SURSET (Statements supported under BASIC/S) &

followed by a SINGLE variable name, or an expression in
gquotes. Thus :

PRINT A or
PRINT"Message” or
PRINT R$

Also, you may use a semi—colon after anything being
printed in order to suppress the carriage return.

PRINT? is also supported -—- just set any integer
variable {(or constant) to the value of the location to
be printed at, and vyou may then use any of the above farms
with 1t. Thus :

PRINTIN, "TRS-80";

It is important to note that you may NOT print a list of
items when using BASIC/S:; only one item (of any type) may be
PRINTed at a time. The same applies to INPUT.

LPRINT

Syntax for LPRINT is in every way the same as for
PRINT, except of course that LPRINT® has no meaning.

{(c) 1982 by Breeze/d5D. Inc.

BASIC/S I1 Documentation Fage

You may input a single variable, of any type. You may
not input a list of variables, but INPUT"PROMPT":A 1is
supported (or As).

When executing a Basic/s compiled program, if input is
requested, hitting the <break> key will cause an exit

If 1in answer toc an input prompt, vou hit <Enter> only,

then the variable being inputted remains unchanged and
the program continues {just like regular BASIC —— and this
holds regardless of variable tvpe.

LINE INPUT

DEFINT

LINE INPUT from the keyboard is supported. Syntax
1s exactly as it is in BASIC. You may LINE INPUT an
integer variable i+ you wish, although this would
not work in BASIC.

e.g. LINE INPUT A% or
LINE INPUT "Prompt”:A$ {just like in BASIC)

This statement allows vou to set a string (A% in this
case) to any DOS command; or the name of a command file
vou wish to invoke, and to exit the cuwrrent program and
have that command executed. Do NOT say RUN"PGM"; this
will be not be correctly compiled! Also, RUN by itsel+
is incaorrect.

For compatibility with the BASIC interpreter, you may
use this statement {(as in DEFINT A-Z). No other DEF
statements are accepted, and this one only reaffirms what
BASIC/S 11 does anvway — regards all variables as
integers unless they are suffixed with “$°.

This statement. with or without an argument, will cause
BASIC/S variables to be zeroed cut. It depends on where
yvour /CMD file starts:; if youwr /CMD file is in low
memory, then all memory from 41214 (decimal) up to

HIGH® will be zeroed out, while otherwise SZ200H up to
D&D8H is zeroced cut. This makes sure that your /CMD
file itself will never be affected, but that your
variables will bhe zercoed. This works egually well on

{c)1982 by Breeze/08D., Inc.

A

BASIC/S I1 Documentation Fage &
the Mod I or the Mod III — BASIC/S knows which machine
vyou are running it on. and will use the correct HIGHS
for your machine. DATA will also be cleared, and an
automatic RESTORE done so that the DATA pointer will be
correct.

GOTO0 1In

The GOTO statement —— works just as in BASIC, but it MUST
BEGIN the line it is on. Thus CLS:G607T0 20 will not
work, although no message would be given.

ON 60TO

As in BASIC, except that the index must be a simple
variable (not an expression). Thus

ON X 60TO 20,30, 1000

No limit on the number of different lines you can
bhranch to. other than the limitation of 255 chars
per line. ON GOSUR is NOT supported. Like IF, 6070,
and GOSUBR, ON GOTO statements must begin the line
they are on.

GOSUR 1n

The standard GOSUR statement, but like GOTO, must
begin the line it is on.

READ / DATA /7 RESTORE

Your program may have DATA statements., containing
integer constants only {(as in DATA 1,2,3) — in all of

yvour DATA statements you can have a total of 383
integers {(noc morel. It is important that these DATA
statements come before the READ statement(s) that are
to access them (physically before:; that isy —— the
compiler generates code to place the data in memory
when the DATA statements are encountered. Syntax for
the READ statement is READ N —— vou can read only a
single integer variable, which would normally be done
in a FOR/TO loop. 0One big use for this is to poke DATA
for a USR routine into memory. Refore BASIC/S allowed
READ/DATA, this process was rather clumsy.

RESTORE

works just like in standard BASIC.

{c) 1982 by Breeze/ /5D, Inc.

IF

BASIC/S I1 Documentation Page

A very restricted IF statement —— you may only compare
two strings (for equality or in the < direction),
or two simple integers {(variables or constants).

Thus (for strings) :

IF A$<B% THEN 20
or IF As=R$s THEN 100
The compare must be in the < direction only, or with

> >

=". You may check whether a string is null via

IF As="" THEN 200 {(for example)
but this is the only time you may test a string against
a constant.

For integers :
IF A=R THEN 10Q0
or IF A<B THEN 50
{and either A or B may be an integer constant, as
in IF AL72 THEN 200).

¥%% Note: GOT0, GOSUR, and IF statements MUST
begin the 1line that they are on. Also, ELSE is now
supported:

vou may follow any IF statement with ELSE, followed

by as many statements as you can fit on one line, so
long as they do not need to start the line they are on.
Thus IF, GOTO, GOSUB, and ON GOTO statements may not
follow an ELSE, but any other statement may do so.

FOR/NEXT

UsR

The For/Next loop is implemented for INTEGERS only. You
may code

FOR A=R TO C

NEXT A

Constants may be used where B and C are indicated,
as long as they are integers {(positive, negative, or
zero).

The variable in the NEXT statement is NOT optional.
There is no STEP clause.

FOR/NEXT loops may be {(statically) nested.

A single USR call 1s allowed. It must be set up bvy

{(c) 1982 by Breeze/05D, Inc.

BASIC/S I1 Documentation Fage
DEFUSR, and the calling address must be a simple
decimal integer constant. Thus :

DEFUSR=-1000

Note: There is no VARPTR statement. However, the
addresses of all simple variables in BASIC/S are always
the same and may be calculated as follows :

If A is the ascii code of the variable in question. then
the VARPTR is s

INTEGERS : —11406 + 2 % (A — 6503
STRINGS : 23192 + 256 ¥ (A — &59).

Strings are stored a 1little differently than in Level
I11. Each string is allocated 256 bytes, the first of
which contains the length of the string (0 to 255) and
the rest of which contain the string itself. The
Varptr points to the length byte.

Y=USR {X)
This causes the routine whose address was defined by a
previous DEFUSR statement to be called. The current
value of X is loaded into the HL register pair before
the call is made, and on retwn, Y is given the value
in the HL register pair. Do NOT call the ROM routines
at O0A7F and 0A%PA for this. Any integer variables may
be used, not just X and Y. Also, a {(decimal) integer
constant may be used as the argument to be passed.

SET. RESET, and POINT

Use integers {(either variables {(followed by) or
constants) as the arguments. As with most BASIC/S
functions, they may not be used in more compley
expressions. Thus

SET{(X,20)
A=POINT (R, C)
The latter is the only way to access POINT —~ it cannot

be invoked in an IF statement.

PEEK and POKE

Exactly as in Level 11, except that
the arguments must be integers —— {constants
or variables). Thus

A=PEEK {IM)

{c) 1982 by Breeze/05D, Inc.

BASIC/S I1 Documentation Page 9
FOKE AR
POKE 15360,191
Z=PEEK (14312)

INF and QUT
Syntax here is just like that for PEEK and POKE,
1.2. you may use integer variables or constants
as the arguments (no expressions).

A=INP (P) {input a byte from port P and
store in A)

outT P,v {output value V to port P)

ouTr 255.1

S=INF(232)

AND /7 OR
You may use these two functions in order to calculate
an AND/OR result {(for integer variables or constants)
and store the answer in an integer variable. Thus

X=Y AND 20
U=A OR R

CLS — Clear the screen

Random integers hetween 1 and N may be generated by the
statement X=RND{(N). The left hand side may be any integer
variable. The argument is required and may be an

integer constant if vou like. The statement RANDOM

is also supported, to reseed the random number

generator.

DIM

You can DIMension up to 20 arrays in a program to be compiled
with BRASIC/S — they can be either integer or string.as
distinguished by the presence of a %.

Array names may be any
length {(up to 255) with evervy character significant.
ONLY letters A-Z should be used within an array name.
Thus

DIM ARRAY (20,7) ,5T$(15)

You may have one or two dimensions for each array — no

{c)17982 by Breeze/(5D. Inc.

BASIC/S II Documentation Page 10

more. DO NOT use BASIC keywords in yvour array names.

Be careful about your available array space - BASIC/S

will tell vyvou if vouwr array space will overlay BASIC/S

data areas or will exceed the &4K memory limit.

1f this happens, try recompiling with a start address of
S6000;

this will give you about 192.75 K of space for youwr arrays,

as i1t puts vour /CMD file in high memory instead of low.

Still, 19.735K is only enocugh room for a string array of

dimension 79 (79 % 2546 = 20,224). With integer

arrays, you can use much larger dimensions.

Syntax» for using array elements :
For the most part. you can use your array variables just
like any other variables; and you may always use integer
constants {(as well as variables) for the subscripts).
Thus

READ NUM{I)

INPUT ARRAY (7))

PRINT ST4 {3

AS=LEFTH (ST (5) ,NUM{I))
The exceptions are as follows :
When an array element is on the left hand side of the
’=7 sign. the right hand side MUST be a simple variable
or constant of the same type — no expressions allowed.
Thus STH(1)=LEFT${A%,2)is not allowed: you would need to
set H%$=LEFT${(A%.2) and then S5T%(1l)=H%. However, it is
0K to set an array element to a constant, as in
ST$(3)="HELLO" or ARRAY(14,56)=12.
Also, any statement that references an array element
should contain NO numeric constants of any kind, except
for {(possibly) subscripts to the array itself.
One exception here is that array elements may be
compared via the IF statement, and the line number
reference will not be misconstrued. So

IF ST${1)<ST$(I) THEN 75
is O3 just be sure to follow the syntax in all other
respects. But something like

LINE INPUT#1,8T$(1)
or PUT 1,.L{I)
won't work as the 717 will be misunderstood, and translated
to a temporary integer wvariable, which won™t work.
Thus in general, the statements in which vou may not
retference array elements are most of the DISK 1/0
statements (OPEN, FIELD. GET, PUT, LINE INPUTH#,
PRINT#), and PRINT3.

This statement allows the user to "scan” a file or device for a
single byte (similar to INKEY$% for the kevboard). First you OFPEN the

{c)1982 by Breeze/ /05D, Inc.

BASIC/S I Documentation Page 11
file or device in guestion for input; then

SCAN b, A%

will read a byte from the +File or device with DCB# b (must be a
constant, 0-9) into A%.

{For use with LDOS only). This statement allows you to truncate
a random access file at a specitied record. If vyou have a random
access file (DCBR 1 or 2 only,; in BASIC/S) open, then to cause it to
have S0 records (instead of say 100)., just GET 1,R {where R=50) and
then SET EOFt1 {exactly as in LBASIC). 0Of course vou need to close
the file to make sure the directory entry 1is updated. This could
also be done via PUT instead of BET:; you just need to be positioned
at the correct place in the file befare vou do the SET EOF. DO NOT
try to SET EOF past the EOF - this bomb out with a DOS error.

Allows vou to temporarily exit from yvour BASIC/S compiled code and
execute a DOS command. and have control returned to vour compiled
program afterwards. Just set any simple string variable to the
command you wish to execute, and then do a CHMD A%. BRe sure the
command executed does not overwite vour code; compile yvour program
starting at 7000H or higher +to aveoid this problem {(or even at
560001,

A limited form of error Wrapping is possible with BASIC/S.
In this form., you may trap for DOS errors only, not errors in BRASIC
or ROM processing. There is no ERL or RESUME in this form: all vou
can do is take some action based on the DOS error that occurvred.
First vyou establish yvour error trap routine with OM ERROR. Your ON
ERROR statement MUST occcur AFTER the line in vour error trap routine
vou want to branch to: thus

50 ON ERROR GOTO 100
is no good since 100 comes later than S0. 5o vouwr program would
normally start out with a jump around the first line of vour error
trap. to vour ON ERROR statement :

10 6OTO 40
20 A=ERR

{c)1982 by Breeze/ /05D, Inc.

BASIC/S 11 Documentation Fage 12
X0 GOTO 20003 "main error routine at 2000
40 ON ERROR GOTO 20

RASIC/S must already KNOW where in memory your error routine will be
when it encounters the ON ERROR statement: hence the requirement for
the error trap to come before ON ERROR.

The very FIRST thing vour error trap must do is set some integer
variable to ERR, to grabk onto the error code. If vou wait to do
this, ERR will «change and not be relevant. Finally, the code
returned in ERR is the same as the DOS error codes that are explained
in your DOS manual, which are returned in register A whenever a DGS
error occurs. For example, if ERR were 24, this would indicate °File
not found?.

-

Integer arithmetic is limited to +,—.%,/ and only 2
cperands allowed on the right hand side. No builtin functions
for integers. Constants may be used. however.

Thus:
X=AiR
X=5-R

Mote that unary minus is not allowed here {(for variables) ie X=-Y+7
is no good, while X=7-Y is OK. However, with constants you may use
unary minus freely. Anything of the form X=AsBE is 0Ok, where A and &
are integer variables or constants and s is one of +,—.%,/, as long
as you don"t have two minus signs adiacent.

As=RB%
As="constant"
A$=RE+CSH {(simple concatenation)

Also we have the builtin string +functions G85C, LEN,
CHR$, LEFT%, VAL, RIGHT%., MID%, 8STR$, and INSTR.

Where numeric arguments are required in the

string functions, simple integer variables or constants
must be used — no expressions. The actual string arguments
cannot be constants., but:

AS=LEFTH (X%, 2)

{c)1982 by Breeze/B5D. Inc.

BASIC/S 11 Documentation Page 13

(for example) would be OK.

Also, expressions must be reduced to their simplest
form — e.g., concatenation within a function or
function composition is not allowed. PBRreak it down'

Note: The INSTR function differs from the regular
DISK BASIC one in that no starting position may be
specified —— syntax 1is just N=INSTR{A$.B$).
However. unlike previous versions of BASIC/S, ALL of
B i1s searched for. not just the first character.

MID$ note —— vou can use MID$ on the left hand side

af the = sign, and in that case., yvyou can use either

of the two forms MIDE{A%S.N)=B% or MIDS{A%, N,L)=B$ —
but they will give the same results, i.e. the length of
B is used, L is ignored in the second form. If the
sowrce string {(B$) is null. nothing is done.

Note III1: The INKEY$% function is implemented, and
must be used in the form: A%F=INKEY$ (or B%, etc.).

This is a hex conversion function, not supported by
TRS—-80 Disk Rasic, but is supported under Microsoft
BASIC-80 {and by their BASIC Compiler). BASIC/S 11 also
supports it; what it does is to take an integer argument
{variable or constant) and convert it te a hey string
equivalent in value to the original integer. Thus

AF=HEX4 (—1) : PRINT A%

would print out "FFFF" {no quotes).

DISK 1I/0 statements

Essentially, vou have ten disk I/0 buffers available
for use (0—9), all of which may be used for sequential access,
and two {1 and 2 of which may be used for random access. Here
are the specifics :

OFEN

The OFPEN statement is essentially that of disk BASIC,
except that the filespec must be a string variable and
not an expression in gquotes. Syntax is

OPEN"m” , b, F$<,r>

{c) 1982 by Breeze/85D, Inc.

BASIC/S I1 Documentation FPage
where m = meode = 1,0,R;, or E
b = buffer = {09} {constant only)
{must be 1 or 2 for direct access)

F$ = filespec {variable only)

r = logical record length {(optional —— may be
either an integer constant or an integer
variable).

BASIC/S makes few restrictions on vyour use of the
disk 1/0 statements, so be careful. For example, if
vou wanted to open a seguential file with an LRECL of
16, wyou could. However, you would probably be well

advised to stick to direct access files for this!
OPEN"E" 1is like OPEN"0O" except vyvou start out
positioned at the end of the file.

Sequential I1/0 1is done with the LINE INPUTH# and PRINTH#
statements. Just gspecify a buffer number adijiacent to the #.
and you are ready to go. Only a simple string variable may
be input or cutput. although PRINT#1.A%; will disable
the carriage return.

Random disk 1/0 is accomplished via the following :

You must field yvour buffer in order to communicate
between vyowr strings and the disk file being accessed.
Syntax is :

FIELD 1.nn AS A%$,mm AS B, ...

—— the buffer can be 1 or 2, the strings can be any of
A% thru 7% (no array references allowed here!), and
the numbers “nn’, mm® etc. must be integer constants
{(1-2585 —= 0 is not allowed). Also vou can’t really use
a multiple FIELD stmts +or the same file —— the

second will override the +irst. Moreover., the
statements to process a random access file must be
statically nested —— i.e. do not GOSUR or GOTO a later
line to FIELD a buffer and then retwn to do vouwr LSETs
and PUTs. etc. Just OPEN the file, FIELD the buffer,
process it, and CLOSE it, without GOSUBRS and GOTOS.

(At least. don’t branch anvwhere outside the range

of statements between the OPEN and CLOSE stmts).,

LSET

To place yvour strings into the buffer prior to being

{c11982 by Breeze 05D, Inc.

14

BASIC/S 11 Documentation Page 15

PUT to the disk, use LSET. Thus
LSET A%=E%

where A% is one of the strings mentioned in your FIELD
statement. If LEN(R$) is less than that of the field
variable A%, it will be filled out with spaces in the
buffer. I+ greater, only the leftmost portion of B$
{for the fielding length of A%) will be in the buffer.

Syntax is PUT b.N where b is the buffer number (1 or
2) and N is any integer variable; containing the
record number to be put. The record number variable is
not optional.

As in GET 1,R —— gets the Rth record from the disk
file, and places its contents into the string variables
mentioned in the FIELD statement.

The LOF function is implemented and syntax is

MN=LOF (b}
where b 1is the buffer number (I o 2 — must be a
constant) . This returns the number of records in the

currently open +tile with buffer b.

CVI and MEI$

For convenience 1in reading and writing integers
from/to direct access files, these functions are
implemented as in TRSDOS. In case vou were mvetified
as to exactly what they did — well. i+ the integer N

has the 2 byte representation L;H), then MKI${(N) is
just CHR$ (L) +CHR$ (H) . €CV1 ijust does the exact reverse.
As with most BASIC/S functions, these may be used only
with simple integer/string variables.

There is no glohal close in BASIC/S — you must mention
the buffer number. Thus,

{(c)1982 by Breeze/ /05D, Inc.

BASIC/S 11 Documentation Page

CLOSE ©

would close the file with buffer number S. If you close
a file that isn™t open, vou will bomb out with
TFILE NOT OPENT.

This isn“t a function as such; it is to be used in a
special form of the IF statement to check for EOF when
inputting from a file. Simply say

IF EGQF{b) THEN 200

{or whatever line number) to check for end of file on
buffer b {(0—9)

BASIC/S Memory Map

Following is a map of memory from 3S200H up to HIGHS, shDWing
how BASIC/S uses the memory in your TRS5-80 (48kK):

/CMD file in low mem in high mem
5200 ——————————

your /CHMD file Array space {(20K)
AlQ0D ——————

This area is always reserved for BASIC/S variables
and DCR s.

Free area for vour own use {(e.g. USR routines).

/CMD file
Array space
{DACO to HIGH%)

{c)1982 by Breeze/B5D, Inc.

16

RASIC/S 11 Documentation Fage 17

——DISCLAIMER OF WARRANTIES & LIMITATIONS OF LIARILITIES —

We have taken great care in preparing this package. We make no
expressed or implied warranty of any kind with regard to this manual
or to BASICS/I1. In NO event shall we be liable for incidental or
consequential damage in connection with or arising out of the
performance of this program.

BASICS/II (c) 1982 by Bill Stockwell and BRreeze/05D, Inc.

All rights reserved. No part of this manual and NONE of the programs
may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by
information storage retrieval system, BBS5, etc. Registered owners are
entitled to make copies of the disk for their OUWN use only!

Questions should be addressed tos

Bill Stockwell

4771 NW 24th #228N
Oklahoma City 0OK 73127
{405) 947-4156

Mnet 70070,320

Rill Stockwell may also be reached on the @5D Sig
on MicroNet. Leave a message to 70001,610 for info
or from the 0K prompt, type R OSD{enter>.

Published by:

PowerSoft — a division of Breeze/88D, Inc.
11500 Stemmons Expressway Suite 125
Dallas, Texas 73229

TR5-80 and TRSDOS are registered copyrights of the TANDY CORP.
LDOS is a registered trademark of Logical Systems, Inc.

Newdos and Newdos/80 are trademarks of Apparat

Dosplus is a trademark of Micro Systems Software

{c)1982 by Breeze/05D, Inc.

